Optimal properties of some Bayesian inferences
نویسنده
چکیده
Relative surprise regions are shown to minimize, among Bayesian credible regions, the prior probability of covering a false value from the prior. Such regions are also shown to be unbiased in the sense that the prior probability of covering a false value is bounded above by the prior probability of covering the true value. Relative surprise regions are shown to maximize both the Bayes factor in favor of the region containing the true value and the relative belief ratio, among all credible regions with the same posterior content. Relative surprise regions emerge naturally when we consider equivalence classes of credible regions generated via reparameterizations.
منابع مشابه
A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method
In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...
متن کاملSome statistical inferences on the upper record of Lomax distribution
In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.
متن کاملGenetic Properties of Some Economic Traits in Isfahan Native Fowl Using Bayesian and REML Methods
The objective of the present study was to estimate heritability values for some performance and egg quality traits of native fowl in Isfahan breeding center using REML and Bayesian approaches. The records were about 51521 and 975 for performance and egg quality traits, respectively. At the first step, variance components were estimated for body weight at hatch (BW0), body weight at 8 weeks of a...
متن کاملLearning the Preferences of Ignorant, Inconsistent Agents
An important use of machine learning is to learn what people value. What posts or photos should a user be shown? Which jobs or activities would a person find rewarding? In each case, observations of people’s past choices can inform our inferences about their likes and preferences. If we assume that choices are approximately optimal according to some utility function, we can treat preference inf...
متن کاملNumerical Meshless Method in Conjunction with Bayesian Theorem for Electrical Tomography of Concrete
Electric potential measurement technique (tomography) was introduced as a nondestructive method to evaluate concrete properties and durability. In this study, numerical meshless method was developed to solve a differential equation which simulates electric potential distribution for concrete with inclusion in two dimensions. Therefore, concrete samples with iron block inclusion in different loc...
متن کامل